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If internal energy is a state function of v, S, ~, then 

(4.4) 

(4.5) 

If ~ is a dissipative variable, e may still be a state function of v and Sand 11 = o. Eliminating 
de/dt between equations (4.3) and (4.5) yields 

dS dv d~ dq 
T-= (p - P*)-+(l1*-l1)-+-

dt '" '" dt dt dt . (4.6) 

Entropy, S, can now be eliminated between equations (4.1) and (4.6): 

dp dp* d~ dq 
[a*2+(p* - p )vf*] - = _'" - [a* + Pf*(l1* -11)]--pr*-

'" '" dt dt dt dt . 
(4.7) 

If the system is reversible with p* = p, 11* = 11, and if dq/dt = 0, a* = a, a* = a, equation (4.7) 
reduces to equation (3.5). The calculation proceeds as before from this point; the difference is 
that the extra terms of equation (4.7) must be carried in the computation. The extension to 
include several variables ~ .. ~2' etc. is straightforward. 

Examples 
(i) Elastic-plastic relaxing solids. The work of uniaxial compression can be expressed as 

dw = vP'" dE",. (4.8) 

If elastic and plastic strains are occurring simultaneously, increments in elastic and plastic 
strain may be assumed to be additive: 

(4.9) 

where superscripts e and p stand for elastic and plastic, respectively. It can also be assumed, to 
a good approximation for many substances, that there is no density change associated with 
plastic strain: 

de = dee +dep = de' = 4 dEf; = dE", = dp/p. (4.10) 
I 

The pressure and strain deviators are, respectively, 

dII ij = dpij - ~ij dp, deij = deij.+ de~. (4.11) 

Take principal axis coordinates with uniaxial compression along the x-axis. Then increments 
in the work of elastic and plastic deformation are 

elastic, (4.12) 

dWdp = V ~ IIj de! plastic. (4.13) 
J 

It is plausible to assume that stress is supported entirely by the elastic strains. To see this, 
consider the microscopic behavior of a plastically-deforming material from the point of view of 
dislocation theory, where plastic deformation is synonymous with motion and generation of 
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dislocations. In most materials dislocations probably move at all stress levels, so there is no 
such thing as a yield point and there is no truly elastic behavior. But in practice the yield point 
concept is useful and the yield point itself may be taken to be the point at which large numbers 
of dislocations are set in motion. The motion of dislocations is inhibited by the existence of 
energy barriers which must be overcome by combination of stored elastic energy and thermal 
fluctuations of atoms. So, for example, one may consider a strained, work-hardening solid as 
one in which many dislocations exist but are momentarily immobilized or 'pinned' by energy 
barriers. If applied stress is held constant, dislocations may occasionally overcome a barrier 
and move to the next barrier, thus contributing to the plastic deformation by creep. 

If the external stress is increased, local strain energy is increased around the pinning points, 
more dislocations are moved through pinning points and pass on until they are pinned again. If 
it is assumed that dislocations move freely between pinning points, the plastic strain which 
results from their motion requires no part of the applied stresses; i.e. the applied stress is 
supported entirely by the elastic part of the strain. It does follow, however, that a relaxation 
process may exist. For example, an increment in stress increases local strain energy around 
pinning points and increases probability that dislocations will break free of their pinning points 
and move on until pinned again. However, the probability of a dislocation breaking free is time 
dependent because it depends on thermal fluctuations as well as strain energy. This means that 
an increment in stress will produce an immediate elastic strain, and that, as time passes, 
dislocations escape their pins, move and are repinned, so that a plastic strain develops. Or the 
original increment in strain is reduced as the pinned dislocations escape from their barriers and 
the elastic strain is reduced. This concept can be expressed quantitatively in the following way 
for uniaxial strain in an isotropic solid: 

dpx = A d8 + 2p, dE/ (4.14) 

= (A + 2p,) dEx - 2p, dE/, 

when divided by dt this yields equation (3.18). In terms of stress and strain deviators this 
translates to 

Iij = 2p,ej - 2p,e! (4.15) 

= 2p,ej - F(S, e) 

where F is a relaxation function. 
Equations (4.14) and (4.15) are both based on the assumption that dislocations move 

between pinning points without drag. If this is not true, a viscous contribution to the stress 
appears: 

For uniaxial strain 

Then 

where 

dpx = (A + 2p,) dEx - 2p, dE/ + 11 dEl 

Iij = 2p,tj - 2p,t! + 211et. 

IIx = 4'T/3, 

ex = 2Ej3, 

IIy = lIz = - 21'/3, 

ey = ez = -Ej3. 

dlIx = 4<lT/3 = 2p, de/, 

dlIy = -2d'T/3 = 2p, dey', 

d'T = 2p, d-ye, 


